TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation

نویسندگان

  • Dawei Liu
  • Yunhuai Zhang
  • Peng Xiao
  • Betzaida Batalla Garcia
  • Qifeng Zhang
  • Xiaoyuan Zhou
  • Yoon-Ha Jeong
  • Guozhong Cao
چکیده

Anatase titania nanotube arrays were fabricated by means of anodization of Ti foil and annealed at 400 ◦C in respective CO and N2 gases for 3 h. Electrochemical impendence spectroscopy study showed that CO annealed arrays possessed a noticeably lower charge-transfer resistance as compared with arrays annealed in N2 gas under otherwise the same conditions. TiO2 nanotube arrays annealed in CO possessed much improved lithium ion intercalation capacity and rate capability than N2 annealed samples. At a high charge/discharge current density of 320 mA g−1, the initial discharge capacity in CO annealed arrays was found to be as high as 223 mAh g−1, 30% higher than N2 annealed arrays, ∼164 mAh g−1. After 50 charge/discharge cycles, the discharge capacity in CO annealed arrays remained at ∼179 mAh g−1. The improved intercalation capacity and rate capability could be attributed to the presence of surface defects like Ti–C species and Ti3+ groups with oxygen vacancies, which not only improved the charge-transfer conductivity of the arrays but also possibly promoted phase transition. © 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

Controllable Synthesis of TiO2@Fe2O3 Core-Shell Nanotube Arrays with Double-Wall Coating as Superb Lithium-Ion Battery Anodes

Highlighted by the safe operation and stable performances, titanium oxides (TiO2) are deemed as promising candidates for next generation lithium-ion batteries (LIBs). However, the pervasively low capacity is casting shadow on desirable electrochemical behaviors and obscuring their practical applications. In this work, we reported a unique template-assisted and two-step atomic layer deposition (...

متن کامل

Electrodeposition of Ag nanoparticles onto bamboo-type TiO2 nanotube arrays to improve their lithium-ion intercalation performance

Bamboo-type TiO2 nanotube arrays prepared via anodic oxidation are modified with Ag nanoparticles by pulsed electrochemical deposition, for improved lithium-ion intercalation property as the anode material in lithium-ion batteries. Heat treatment converts as-formed nanotubes into anatase for Ag deposition. Bare and Ag-modified nanotubes are cycled at a current density of 800 μAcm between 1.0 an...

متن کامل

Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays

Articles you may be interested in The study of the mechanical properties of Au films by nanoindentation techniques AIP Conf. High magnetic field annealing effect on visible photoluminescence enhancement of TiO2 nanotube arrays Appl. Magnetic and mechanical properties of rolled-up Au/Co/Au nanomembranes with multiple windings Direct observation of twin deformation in YBa2Cu3O7− x thin films by i...

متن کامل

Synthesis and electrochemical properties of InVO4 nanotube arrays

This paper reports an experimental study on the synthesis and electrochemical properties of InVO4 nanotube arrays fabricated by capillary-enforced sol-filling in templates in combination with solvent-evaporation induced deposition. InVO4 sol was synthesized using the sol–gel route from vanadium oxoisopropoxide and indium nitrate with ethanol as the solvent. Nanotube arrays of InVO4 were prepare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009